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WiFi-Based Cross-Domain Gesture Recognition
via Modified Prototypical Networks

Xie Zhang , Chengpei Tang , Kang Yin , and Qingqian Ni

Abstract—Numerous deep learning studies have achieved
remarkable advances in WiFi-based human gesture recogni-
tion (HGR) using channel state information (CSI). However, since
the CSI patterns of the same gesture change across domains
(i.e., users, environments, locations, and orientations), recognition
accuracy might degrade significantly when applying the trained
model to new domains. To overcome this problem, we propose
a WiFi-based cross-domain gesture recognition system (WiGr)
which has a domain-transferable mapping to construct an embed-
ding space where the representations of samples from the same
class are clustered, and those from different classes are separated.
The key insight of WiGr is using the similarity between the query
sample representation and the class prototypes in the embedding
space to perform the gesture classification, which can avoid the
influence of the cross-domain CSI patterns change. Meanwhile,
we present a dual-path prototypical network (Dual-Path PN)
which consists of a deep feature extractor and a dual-path (i.e.,
Path-A and Path-B substructures) recognizer. The trained feature
extractor can extract the gesture-related domain-independent
features from CSI, namely, the domain-transferable mapping.
In addition, WiGr implements the cross-domain HGR based
on only a pair of WiFi devices without retraining in the new
domain. We conduct comprehensive experiments on three data
sets, one is built by ourselves and the others are public data
sets. The evaluation suggests that WiGr achieves 86.8%–92.7%
in-domain recognition accuracy and 83.5%–93% cross-domain
accuracy under the four-shot condition.

Index Terms—Channel state information (CSI), cross-domain
recognition, gesture recognition, prototypical networks (PNs).

I. INTRODUCTION

HUMAN gesture recognition (HGR) plays an impor-
tant role in human–computer interaction [1], [2], and

can support many emerging Internet-of-Things (IoT) applica-
tions, such as smart home [3], [4], user identification [5], [6],
and health care [7]. Generally, the methods that enable the
HGR rely on cameras [8], [9], wearable devices [10], [11],
radars [12], [13], and smartphones [14]. However, these meth-
ods may incur extra equipment costs or raise privacy issues.
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In recent years, WiFi-based HGR methods [15], [16] have
received immense attention due to private security and ease
of deployment. Particularly, numerous studies [15], [17] based
on deep learning have made significant advances in this field.

The rationale behind WiFi-based HGR is that human
gestures can bring about signal fluctuations which can be
extracted from the physical layer feature of WiFi, namely,
channel state information (CSI) [18]. However, WiFi sig-
nals are absorbed, diffracted, reflected, or scattered by other
objects during propagation, leading to the high coupling
between CSI and environmental factors besides human ges-
tures. Fig. 1(a)–(d) shows that the CSI amplitude patterns
of the same gesture across domains (i.e., environment, user,
location, and orientation) are quite different, called the cross-
domain pattern change. Furthermore, such differences are even
more obvious than that of different gestures in the same
domain shown in Fig. 1(e). Fig. 1(f) also illustrates that high
accuracy can be achieved if the ARIL model [19] is trained
and tested at the same location. However, the accuracy drops
to below 20% when the trained model is applied to the test-
ing data from the new location. In a nutshell, the recognition
performance of the general WiFi-based HGR model might
degrade significantly when applying the trained model to a new
domain (i.e., new users, various environments, and users in
different locations and orientations) [20], [21], which is called
the cross-domain problem.

To address this problem, many studies have been proposed
for WiFi-based cross-domain HGR. In [22] (Widar3.0), the
authors introduced a one-fits-all deep learning model for
cross-domain HGR based on a domain-independent handcraft
feature. Zou et al. [16] proposed an adversarial unsupervised
domain adaptation scheme JADA to construct a domain-
invariant feature space. Similarly, EI [23] adopted adversarial
learning to train a robust HGR model. WiAG [24] presented
a translation function to automatically generate virtual samples
for the target domain, and trained recognition models using
virtual samples under all possible domain configurations.

Nevertheless, these methods have obvious limitations.
Widar3.0 [22] has shown state-of-the-art performance in cross-
domain HGR. However, it needs at least three receivers and
one transmitter to gain enough CSI measurements for the
feature extraction. JADA [16] and EI [23] are based on adver-
sarial learning. These methods require to collect a large
number of unlabeled data from each new domain, which
is a labor-intensive and time-consuming process. WiAG [24]
needs to generate virtual samples and train specified models
for all domain configurations, which is not computing-friendly.
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(d) (e) (f)

Fig. 1. Examples of cross-domain samples and deep learning model performance. (a), (b), (c), and (d) CSI amplitude patterns for a fixed gesture of cross-
environment, cross-user; cross-location, and cross-orientation, respectively. (e) CSI amplitude patterns of different gestures in the same domain. (f) Accuracy
of the ARIL method [21] for in-location and cross-location tests.

Fig. 2. Intuition of gesture-related domain-independent feature extraction behind Dual-Path PN. Different shapes represent different gestures.

In this article, we propose a WiFi-based cross-domain
gesture recognition system (WiGr) to achieve comparable
cross-domain recognition accuracy against the abovemen-
tioned methods. WiGr uses a small number of labeled sam-
ples from a pair of WiFi devices without retraining in the
new domain. Concretely, we first learn a domain-transferable
mapping to construct an embedding space where the repre-
sentations of samples from the same class are clustered, and
those from different classes are separated. Then, for a new
domain, the prototype representations of each class are com-
puted by using a small number of labeled samples. Finally, the
classification can be performed by computing the distances
between the query sample representation and the prototypes
in the embedding space. In this way, by using the similarity
rather than the CSI pattern itself, WiGr can avoid the influence
of the cross-domain pattern change to address the cross-
domain problem. However, there is a challenge in learning

the domain-transferable mapping from the sample space to
the embedding space.

To address this challenge, the dual-path prototypical
network (Dual-Path PN), which consists of a deep feature
extractor and a dual-path recognizer (i.e., Path-A and Path-B
substructure), is provided in WiGr. In fact, the learned feature
extractor is the abovementioned domain-transferable mapping.
In the training phase, given a set of labeled CSI samples from
the same domain (i.e., source domain), the feature extractor
is trained to extract the gesture-related domain-independent
features from the CSI samples. As illustrated in Fig. 2, the
training phase consists of two stages. At the first stage, the
prototype representation for each class is defined as the mean
of randomly chosen sample representations in the embed-
ding space from the corresponding class. To learn extracting
gesture-related features, the feature extractor is encouraged
to cluster the representations of the remaining samples to
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their corresponding prototypes by minimizing the losses of
Path-A and Path-B substructures. This is because the similar-
ities among CSI samples are related to gesture types. At the
second stage, a regularization, namely, orthogonal regulariza-
tion (OR), is provided to increase the gaps between different
clusters in the embedding space. Since the domain feature is
identical in all training samples, this leads to the same rep-
resentations in the embedding space. Increasing the gaps is
helpful in eliminating the domain features while maintaining
the gesture-related features.

In the testing phase, for a new domain, a set of labeled
samples, namely, support set, is needed in which each class
has at least one CSI sample to compute the prototype repre-
sentation. Classification is then performed by simply finding
the nearest class prototype to the query sample representation
in the embedding space.

We evaluate WiGr on three data sets: 1) ARIL; 2) Widar3.0;
and 3) CSIDA. The experimental results show that, based
on the available support set, WiGr can identify common
human gestures with high accuracy under domain dynamics.
In summary, our contributions are listed as follows.

1) Based on the observation that the CSI pattern changes
across domains, we propose a novel framework named
WiGr to achieve cross-domain HGR by using the sim-
ilarities between the query sample representation and
the class prototypes rather than the CSI pattern itself
for gesture recognition. In addition, WiGr is constructed
based on only a pair of WiFi devices and can be directly
deployed in any new domain by using a small number
of labeled samples without retraining.

2) Dual-Path PN, consisting of a deep feature extractor and
a dual-path (i.e., Path-A and Path-B substructures) rec-
ognizer, is proposed in this work, which can encourage
the clustering under the Euclidean distance or cosine
similarity (i.e., a flexible cluster, refer to Section IV).

3) To enhance the availability of the deep feature extractor
in any new domain (i.e., a domain-transferable map-
ping), we propose OR to increase the gaps between
different clusters in the embedding space.

4) We conduct experiments on three public data sets.
The results show that WiGr achieves on average
89%, 93%, 83.5%, and 84% recognition accuracy
for cross-environment, cross-user, cross-location, and
cross-orientation, respectively. This achieves comparable
performance with state-of-the-art works.

II. RELATED WORKS

In this section, we first introduce the cross-domain meth-
ods in CSI-based sensing. Then, some studies, dealing with
cross-domain issues based on few-shot learning, are briefly
presented.

A. CSI-Based Cross-Domain Sensing Techniques

For the CSI-based cross-domain sensing approach, existing
methods can be classified into three categories: 1) domain-
independent feature-based; 2) transfer learning-based; and
3) few-shot learning-based.

1) Domain-Independent Feature-Based: Widar3.0 [22]
proposed a domain-independent feature (i.e., body-coordinate
velocity profile), derived from doppler frequency shift and
developed a one-fits-all deep learning model for cross-domain
gesture recognition. However, Widar3.0 needed at least three
receivers to collect enough CSI measurements for the extrac-
tion of BVP, which limited the use of the system. Compared
with the manually designed domain-independent features,
Zou et al. [16] adopted adversarial learning to construct
a domain-independent feature space. Specifically, there were
two deep learning networks as encoders to map source
and target domain data into the feature space which was
restricted to be domain-independent by adversarial learning.
Then, a shared classifier was applied to achieve acceptable
gesture recognition performance in both domains. Similarly,
some studies [23], [25] adopted both labeled source data and
unlabeled target data to train robust domain adaptative models.
For extracting domain-independent features, some researchers
tried to introduce regularization into the loss function of
the deep learning model, e.g., Han et al. [17] introduced
a Maximum Mean Discrepancy regularization into the loss
function to alleviate the feature heterogeneity across domains.

Consequently, these methods need a great amount of data in
the new domain or more than a pair of WiFi devices (i.e.,
a transmitter and a receiver), resulting in the degradation of
practicability.

2) Transfer Learning-Based: Zhang et al. [26] employed an
ANN-based roaming model to generate simulated CSI samples
for the target environment and retrained the recognition model
by using simulated CSI data to enhance the performance in
the new environments. Similarly, Virmani and Shahzad [24]
proposed a position and orientation agnostic gesture recogni-
tion system, WiAG, which can automatically generate virtual
samples in all domain configurations by applying a translation
function on the source samples. Subsequently, WiAG trained
different gesture classifiers for each configuration by using the
corresponding virtual samples. Sheng et al. [27] addressed the
cross-domain issue by using a trained source domain model
as the pretrained model and fine-tuned it with a small amount
of labeled data in the new scenario.

As such, these methods are not computing friendly for the
extra training in each new domain.

3) Few-Shot Learning-Based: Yang et al. [28] proposed
a one-shot gesture recognition system based on a Siamese
framework and transferable pairwise loss which helped to
eliminate the structure noise (i.e., individual heterogeneity,
environment differences). Inspired by the relation network,
Ma et al. [15] presented a device-free gesture recognition
system, DFGR, which was robust to new users and environ-
ments due to the transferrable similarity evaluation ability. In
addition, Shi et al. [29] proposed MatNet, a neural network
augmented with external memory, to improve the environmen-
tal robustness via one-shot learning.

B. Few-Shot Learning-Based Domain Adaptation

Few-shot learning methods are dedicated to enabling
machine learning models to quickly adapt to related new
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tasks with limited training samples, which have received
much attention in recent years. Since the task remains the
same across domains and can be regarded as related tasks,
the cross-domain problem can be addressed by few-shot
learning methods. Zou et al. [30] proposed a new few-shot
domain adaptation scheme F-CADA. F-CADA specifically
adopted adversarial learning to construct an embedding space
where the source and target data are confused. Moreover,
F-CADA enhanced the performance of the target classifier
with a few labeled target data via greedy label propaga-
tion. In [31], the basic idea was to initialize the classi-
fier with cross-task parameters which were obtained from
multiple specific-task parameters. And the initialed clas-
sifier needed to be fine-tuned in the new domain with
a few labeled data. Zhao et al. [32] proposed a domain-
adversarial prototypical network (PN) model to solve the
domain-adaptation and few-shot learning in a unified frame-
work. The key point of this method was to align the global
domain distribution whilst maintaining source/target per-
class distinguishability via adversarial learning and prototype
learning.

III. PRELIMINARIES

In this section, we first introduce the CSI of WiFi. Then, the
original prototype network (original PN) [33] is briefly intro-
duced, and the problem solved in this article is expounded.

A. Channel State Information

CSI, reflecting the channel response, is the physical
layer (PHY) feature in the IEEE 802.11n protocol. In par-
ticular, CSI contains information regarding the region that
the WiFi signal propagates. Due to the use of orthogonal
frequency division multiplexing (OFDM) and multiple-
input multiple-output (MIMO), CSI is sufficient to dis-
criminate multipath characteristics. Traditionally, the most
widely used wireless signal characteristic is the received sig-
nal strength (RSS) [34], [35]. RSS is the feature of the
media access control layer, which measures the overall atten-
uation of signals across all subchannels. Compared with RSS,
CSI has higher granularity and more information since it
reflects the response of each subchannel [18].

In the time domain, the modeling of the channel response
relies on channel impulse response (CIR), which is denoted
as [36]

h(t) =
l−1∑

i=0

aiδ(t − τi)e
−j2πfi (1)

where ai, 2πfi, and τi are the attenuation factor, phase shift,
and time delay of the signal on the ith path, respectively. fi
represents the frequency of subcarrier. Letter l denotes the
number of signal paths, and δ(t) is the Dirac delta function.

CSI can reflect CIR of all subchannels, and each CSI ele-
ment represents the Fourier transform of CIR in the specific
subchannel

H(fk) = ‖H(fk)‖ej∠H(fk) (2)

Fig. 3. Data structure of the CSI sample.

where H(fk) denotes the CSI measurement of a subcarrier
with central frequency fk. ‖H(fk)‖ and ∠H(fk) represent the
amplitude and phase, respectively.

As illustrated in Fig. 3, the CSI sample can be regarded
as a time series, of which each element is a CSI matrix. In
particular, for an MIMO-OFDM channel with M transmitting
antennas, N receiving antennas, and K subcarriers, the ith CSI
matrix is a 3-D complex matrix Hi ∈ CM×N×K representing
amplitude attenuation and phase shift of the ith sampling. In
addition, the sampling time T is determined by the sampling
rate r of the CSI capture tool and the gesture execution time
t (i.e., T = r × t). Hence, the segmented CSI sample used
for HGR is a 4D complex tensor H ∈ CM×N×K×T, which
characterizes signal variations in different domains (i.e., time,
frequency, and spatial).

B. Prototypical Networks

PNs was first proposed in [33], and its basis is that there
exists an embedding space in which the embedding repre-
sentations of each class cluster around a single prototype.
In particular, a set with N labeled samples P = {(xi, yi)}Ni=1
is given, where yi ∈ {1, 2, . . . , C} is the class label of the
sample xi ∈ RD, belonging to C categories. Support set
S = {s1, s2, . . . , sC} is constructed, where sc = {(xi, yi)}Ki=1
is a set of labeled samples of the cth category, where
c ∈ {1, 2, . . . , C}. The objective is to learn an embedding
function F� : RD→RM for mapping input samples into a
M-dimensional embedding space, where � denotes the learn-
able parameters. The prototype of each category is the mean
values of the embedding representations of the corresponding
support samples

Pc = 1

|sc|
∑

(xi,yi)∈sc

F�(xi). (3)

Given a sample xi from P, PN will produce a distribution
over classes of this sample. The distribution is determined
by the distance between the embedding representation of this
sample and the prototype. Hence, given a distance function
d : RM × RM → [0,+∞), the probability of xi belonging to
class c is defined as follows:

p
(
y = c

∣∣ xi
) = exp(−d(F� (xi), Pc))∑C

c′=1 exp(−d(F�(xi), Pc′))
. (4)
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PN is trained by minimizing the negative log-probability

J(�) = −logp
(
y = k

∣∣xi
)

(5)

where k is the true label of the sample xi, and � denotes the
learnable parameters of PN.

C. Problem Statement

CSI is used to enable the HGR for it can reflect the chan-
nel disturbance caused by gestures. However, the disturbance
is highly heterogeneous across users, environments, locations,
and orientations. Due to this intrinsic diversity, general CSI-
based HGR systems are difficult to generalize to new domains
(i.e., new users, various environments, and users with different
locations and orientations). This is known as the domain shift
problem [37], which significantly degrades the cross-domain
performance of existing CSI-based HGR solutions.

In practical applications, it is feasible to collect a small
number of labeled samples in the target domain, which can be
regarded as a system calibration process. By taking advantage
of these labeled samples, a few-shot learning-based method
can be used to improve cross-domain recognition performance.

Formally, we have three data sets: 1) a training set P;
2) a support set S; and 3) a testing set T. All of these data
sets share the same label space. Specifically, the training set is
a collection of labeled data from the source domain, the sup-
port set contains few labeled data from the target domain, and
a testing set consists of unlabeled data from the target domain.
If the number of categories is C, and the support set contains
K-labeled samples for each category, then the cross-domain
problem is called the C-way K-shot CD problem.

IV. SYSTEM DESIGN

In this section, we present the WiGr framework of
CSI-based HGR. To begin with, we overview the relationships
among different parts. We then provide a comprehensive dis-
cussion of data processing, feature extractor, Dual-Path PN,
and OR in this system. Finally, we introduce the training
scheme of WiGr.

A. System Framework

The overall design of WiGr is shown in Fig. 4. At the first
stage, the raw CSI samples are collected by two commercial
WiFi devices where one is the transmitter and the other is the
receiver. As a generalized system, WiGr is compatible with
different CSI capture devices (i.e., the 802.11n CSI tool [38],
the nexmon CSI Extractor [39], Wi-ESP [40], and Atheros
CSI tool [41]). At the next stage, the collected raw CSI
samples are preprocessed, including denoise and time length
modification. At the final stage, the Dual-Path PN extracts the
gesture-related features and predicts the gesture class.

B. Data Processing

1) Denoise: The WiFi signals contain many interferences
which are mainly caused by high-frequency noises [27]. We
use a finite impulse response filter to obtain the denoised data.
In addition, the phase value of CSI is wrapped in the range

Fig. 4. System architecture of WiGr.

(a)

(b)

(c)

(d)

Fig. 5. Example of CSI sample denoise. (a) and (b) Amplitude patterns of
CSI samples before and after denoising. (c) Raw phase pattern. (d) Denoised
phase pattern.

of [−π, π ], which provides wrong information of the signal
variation. Hence, we unwrap the phase values before the filter
processing. In Fig. 5, the CSI waveforms of a subcarrier before
and after denoising are illustrated.

2) Length Modification: For different gestures, CSI samples
might have different time lengths. However, for the paralleliza-
tion of the Dual-Path PN model, it is crucial to normalize the
time length of the samples into a fixed length. To accomplish
this, we set the fixed execution time for gestures to be 1.8 s,
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(a) (b)

Fig. 6. Structure of the feature extractor. “3 × 1 conv” and “7 × 1 conv”
represent the 1-D convolutional operation with 3 × 1 and 7 × 1 kernel
sizes, respectively. “BatchNorm” stands for batch normalization [43]. “ReLU”
denotes the ReLU. (a) Detailed implementation of the residual block.
(b) Structure of the feature extractor. “3 × 1 Maxpool” represents the max
pooling operation with 3 × 1 kernel size. “ResBlock, s” stands for the residual
block with stride as s. “Avg Pool” denotes the average pooling operation.

which is long enough to complete common gestures. For the
samples exceeding the fixed time length, the excess part will
be truncated directly. For those shorter than the fixed time
length, the sample end is padded with zeros.

C. Feature Extractor

The core task of this part is to extract the high-level gesture-
related domain-independent features from the preprocessed
CSI sample. We use an ResNet-like [42] convolutional archi-
tecture as the backbone of the feature extractor. Since the CSI
data are time series, 1-D convolution, sweeping along the time
axis, is adopted in this model. In fact, limited works are con-
centrating on what structures of neural networks are suitable
for extracting features of wireless signal data. We conducted
some basic experiments to select the effective structure.

There are two adjustments deployed for the preprocessed
CSI sample before input to the feature extractor. The prepro-
cessed CSI sample H ∈ CM×N×K×T is a 4D complexed tensor
that is not suitable for the input of the feature extractor. As
illustrated in Fig. 6(a), we deploy the group convolution in
the first convolutional layer of the extractor, and the num-
ber of groups is M × N. The input of each group is a 2-D
complexed tensor Hg ∈ CK×T, where g = 1, 2, . . . , M × N.
Next, the CSI sample is decomposed into two parts: 1) ampli-
tude Ag ∈ RK×T and 2) phase Pg ∈ RK×T. Hence, the first
convolutional layer adopts K-channel convolution when uti-
lizing amplitude or phase as input. If both amplitude and
phase are used as input, we directly concatenate these two
tensors as APg ∈ R2K×T , and the first convolutional layer
deploys a 2K-channel convolution. The outputs of the first
layer are processed by batch normalization [43] and max pool-
ing. Then, the features are input to three cascade residual
blocks [refer to Fig. 6(b)] which have 3 × 1 filters and batch
normalization [43]. The activate function is the rectified lin-
ear unit (ReLU), and a shortcut is constructed in the residual
block. Finally, the last layer of the extractor is an average
pooling layer to output the feature representation.

Let F� represents the feature extraction network, where �

denotes the learnable parameters. Given the input data x, we
can obtain the feature representation as follows:

z = F�(x). (6)

D. Dual-Path Prototypical Network

The Dual-Path PN, as illustrated in Fig. 7, consists of two
parts, a deep feature extractor and a dual-path recognizer.
Since the details of the feature extractor have been provided
in the previous section, we only focus on the dual-path rec-
ognizer in this section. Specifically, the dual-path recognizer
contains two substructures: 1) Path-A and 2) Path-B. Path-
A consists of a fully connected (FC) layer and a softmax
function. Path-B contains a similarity evaluation function and
a softmax function.

A sample xT
j from the testing set T and a support set

S ={(xS
i , yS

i )}Mi=1 are given, where yS
i ∈ {1, 2, . . . , C} is the

class label of sample xS
i ∈ RD. We obtain the feature repre-

sentations of the above samples via the feature extractor as
follows:

zT
j = F�

(
xT

j

)
and ZS =

{
zS

i

}M

i=1
=

{
F�

(
xS

i

)}M

i=1
(7)

where zT
j and ZS are the feature representations of xT

j and
samples in S, respectively. Based on the outputs of the feature
extractor, a dual-path recognizer is used to predict the gesture
classes.

In Path-A, an FC layer (without bias) followed by a soft-
max function is used to obtain the probability distribution over
the gesture classes. Based on zT

j , the predicted probability
distribution is calculated as follows:

ŷT
jk =

exp
(

HT
jk

)

∑C
c=1 exp

(
HT

jc

) and HT
j = WzT

j (8)

where ŷT
jk presents the predicted probability of xT

j belonging to
class k. W denotes the learnable parameters of the FC layer.

Similarly, based on ZS, the probability distribution over
the gesture classes of the samples in the support set can be
obtained as follows:

ŷS
ik =

exp
(
HS

ik

)
∑C

c=1 exp
(
HS

ic

) and HS
i = WzS

i (9)

where ŷS
ik denotes the predicted probability of xS

i belonging to
class k. W denotes the learnable parameters of the FC layer.

For labeled data (i.e., replacing the unlabeled testing set
with a labeled set, namely, a query set Q = {(xQ

j , yQ
j )}Oj=1),

cross-entropy function is adopted to calculate the loss between
predictions and the ground truth as follows:

Lf =
⎛

⎝− 1

|S|
∑

yi∈S

C∑

c=1

(1|yi = c〉)loĝyic

⎞

⎠

+
⎛

⎝− 1

|Q|
∑

yj∈Q

C∑

c=1

(
1
∣∣yj = c

〉)
loĝyjc

⎞

⎠ (10)
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Fig. 7. Architecture of Dual-Path PN.

where |S| and |Q| represent the number of samples in the
support set and the query set. yi and yj denote the ground truths
of samples xS

i and xQ
j , respectively. ŷic and ŷjc are the predicted

probability of xS
i and xQ

j belonging to class c, respectively. In
addition, (1|yj = c〉) means that if yj = c is true, return 1;
otherwise, return 0.

In Path-B, a function � is used to evaluate the similarity
between the test sample xT

j and the prototype. In particular, the
function �, in this work, is defined as the negative Euclidean
distance or cosine similarity. In addition, the prototype is
obtained from the feature representations ZS by

Pc = 1∣∣ZS
c

∣∣
∑

z∈ZS
c

z (11)

where Pc denotes the prototype of gesture class c. ZS
c is

a subset of the elements labeled c in ZS. Given the above,
the predicted probability distribution over classes of xT

j is
calculated as follows:

ŷT
jk =

exp
(

OT
jk

)

∑C
c=1 exp

(
OT

jc

) and OT
ji = �

(
zT

j , Pi

)
(12)

where ŷT
jk presents the predicted probability of xT

j belonging
to class k. zT

j is the feature representation of xT
j .

In the training phase, we adopt a query set Q =
{(xQ

j , yQ
j )}Oj=1 to replace the testing set T. We can obtain the

loss via cross-entropy function as follows:

Ls =
⎛

⎝− 1

|Q|
∑

yj∈Q

C∑

c=1

(
1
∣∣yj = c

〉)
loĝyjc

⎞

⎠ (13)

where |Q| represents the number of samples in the query set.
yj denotes the ground truth of yQ

j . ŷjc represents the predicted

probability of xQ
j belonging to class c by using the Dual-Path

PN. In addition, (1|yj = c〉) means that if yj = c is true,
return 1; otherwise, return 0.

Note that the combination of Path-B and the feature extrac-
tor is the original PN. Path-A is an assistant to construct an
appropriate embedding space, and the details will be discussed

in the next section. Hence, we adopt the outputs of Path-B as
the final results of this model in the testing phase.

E. Orthogonal Regularization

The key to improving the original PN is the introduced
Path-A substructure which can be regarded as a flexible
cluster maker.

In Path-A, given a sample x whose feature representation is
z and label is c, the predicted probability distribution over the
gesture classes can be obtained by

ŷk = exp(Hk)∑C
c=1 exp(Hc)

and H = Wz (14)

where W =[w1, w2, . . . , wC]	 is the parameter of the FC layer.
Hk is the kth value of vector H. Then, the predicted label of
x is defined as follows:

ŷ = arg max
k

ŷk, s.t. k = 1, 2, . . . , C. (15)

In the training phase, the objective is to make ŷ iden-
tified with the ground truth c, which means ŷc is the
largest probability value. Consequently, Hc is bigger than
any Hk with k = 1, 2, . . . , c − 1, c + 1, . . . , C. Since H =
[H1, H2, . . . , HC]	 = [w1 · z,w2 · z, . . . , wC · z]	, wc · z is
bigger than the others, i.e.,

|wc||z|cosθc > |wk||z|cosθk (16)

where θi is the angle between z and wi, k = 1, 2, . . . , c − 1,
c+ 1, . . . , C. In the training phase, cosθc will increase so that
(16) is satisfied. Namely, the feature vectors of all samples
from class c will get closer to wc based on the cosine distance.

Note that, it is unacceptable to increase |wc| or |z| only
during training. If only |z| increases, there is no help for the
establishment of (16). If only |wc| increases, it is suitable for
the input samples from class c, but will be a disaster for the
samples from the other classes. To the extreme, if |wC| → ∞,
all the samples, whose feature representations are acute angles
to wC, will be predicted to belong to class c. In other words,
there exists a subspace E which is half of the embedding
space, and the label of any feature representations in it will
be estimated as c.
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Fig. 8. Example of the relationship between the feature representations and
the corresponding FC layer parameter vectors w1 and w2 in the embedding
space, where different colors represent different classes.

Given the above, the feature representations Zc of all the
samples from class c will shift closer to the parameter vector
wc based on the cosine distance during the training phase,
where c = 1, 2, . . . , C. Hence, wc can be regarded as the
prototype of class c. As shown in Fig. 8, the feature represen-
tations from two classes distribute around the corresponding
parameter vector w1 or w2 in the embedding space. Since the
feature extractor F� and wC are learnable, Path-A substructure
can be seen as a flexible cluster maker in the embedding space.

Furthermore, for the Dual-Path PN, an appropriate embed-
ding space should have the following properties: 1) the feature
representation clustering of the same class is compact and
2) the margin between different clusters should be as large
as possible. Therefore, we construct an OR on the parameter
W = [w1, w2, . . . , wC]	 of the FC layer to enhance the second
property. In particular, we define the regularization as follows:

Ro = λ

2

⎛

⎝
C∑

i=1

C∑

j=1

wi·wj

|wi‖wj| +
C∑

k=1

|wk|2
⎞

⎠ (17)

where λ is a hyperparameter. We use 1 for λ in this work.
Additionally, Ro is composed of two parts: one is to make
the angle θij between wi and wj tend to 90◦, the other is the
L2 regularization.

F. Training Strategy

The episode-based strategy is adopted to train the Dual-
Path PN, which mimics the process of the testing phase.
Specifically, we have three data sets: 1) a training set P; 2) a
testing set T; and 3) a support set S. P is a collection of labeled
samples from the source domain. T consists of unlabeled sam-
ples and S is a set of labeled samples, which are both collected
from the target domain. The label spaces of all three data sets
are the same.

For a C-way K-shot CD model, the training details are illus-
trated in Algorithm 1. First, a subset SP is randomly selected
from P, which contains K samples for each class to mimic
the support set S. Then, a query set Q = {(xQ

j , yQ
j )}Oj=1) is

randomly sampled from remainder samples in P to mimic the
testing set. Afterwards, we propagate all the samples in the
Dual-Path PN. We finally calculate the loss by

Loss = Lf + Ls + Ro. (18)

In addition, Adam [44] optimization technique is used to
optimize this model, and each episode consists of ST and Q.

Algorithm 1 Episode-Based Training for C-Way K-Shot CD
Problem
Input: Training set P= {(xi, yi)}Ni=1, where yi ∈ {1, 2, . . . , C} is the label

of sample xi. Pk denotes a subset of P, containing all elements
(xi, yi) with yi= k.

Output: The loss J of a randomly generated episode.
for c in {1, 2, . . . , C} do

SP
c←−RandomSample(Pc, K) // Select support samples

Qc←−RandomSample
(
Pc \ SP

c , M/C
)

// Select query samples

ZS
c = {F�

(
xS

)
} for all xS∈SP

c // calculate feature representation

Pc = 1
|ZS

c |
∑

z∈ZS
c

z // calculate prototype

End for
J ←−0 // Initialize loss
for

(
xQ

j , yQ
j

)
in Q =Q1 ∪ Q2 ∪ . . . ∪ QC do

zQ
j = F�

(
xQ

j

)
// Calculate feature representations

Calculate the Lf by using (8), (9), and (10).
Calculate Ls by using (12) and (13)
Calculate the Orthogonal Regularization by using (17).
J←−J+Lf+Ls+Ro // Update loss

End for

We repeat the abovementioned procedure until the network
parameters change insignificantly.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of WiGr on
three data sets under both in-domain and cross-domain sce-
narios. Also, the performance of the different hyperparameter
settings is discussed. The data set and code are available
online.1

A. Experimental Setup

We conduct the experiments on three CSI-based HGR data
sets. The details of these data sets are as follows.

1) Widar3.0 Data Set: Widar3.0 [22], a public CSI-based
gesture data set consisting of two subdata sets, is contributed
by researchers from Tsinghua University. One subdata set con-
tains a total of 12000 CSI gesture samples. 16 users perform
six gestures (push & pull, sweep, clap, slide, draw a circle,
and draw zigzag) in five different positions and five ori-
entations with each gesture repeated five times. Moreover,
Widar3.0 includes three different environments (i.e., a class-
room, an office, and a hall). The other holds 5000 CSI samples
of two volunteers (one male and one female) drawing numbers
0–9 in a horizontal plane. Each number was drawn ten times
and in five different orientations. The data is collected by six
receivers and one transmitter equipped with three antennas.
Here, the 802.11n CSI tool is adopted to provide 30 subcarri-
ers for each link and send 1000 packages/s. The CSI sample
of each gesture is H ∈ C3×3×30×T , where T = 1000 × t and
t is the execution time of the gesture. Note that in this work,
we only adopt the first part of this data set and one receiver’s
data are enough for our method.

2) ARIL Data Set: Wang et al. [19] proposed a CSI-based
gesture data set for the joint task of activity recognition and
indoor localization. One volunteer repeats each of six ges-
tures (i.e., up, down, left, right, circle, and cross) 15 times

1https://github.com/Zhang-xie/WiGr
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Fig. 9. CSI data acquisition scenarios.

Fig. 10. Gestures in CSIDA.

in 16 locations in one room. The considered gestures are
regarded as relevant for human–computer interaction appli-
cations in a smart home. The CSI samples in the ARIL data
set were collected using the universal software radio periph-
erals (USRPs). For each gesture, USRPs collect 192 packets
over 52 subcarriers and the shape of the corresponding CSI
sample is 1 × 52 × 192. We adopt this data set to test
the cross-location recognition performance of the proposed
system.

3) CSIDA Data Set: CSIDA is constructed by ourselves
using one transmitter and one receiver equipped with the
Atheros CSI tool [41]. Devices are set to work at moni-
tor mode at 5 GHz. Furthermore, the channel bandwidth is
40 MHz with 114 subcarriers captured. The transmitter acti-
vates one antenna to transmit 1000 packets/s. The receiver is
equipped with three antennas arranged in a line and separated
by 1.6 cm. Meanwhile, the height of all antennas from the
ground is 1.3 m. As shown in Fig. 9, we collect CSI mea-
surements at different locations in two in-door Environments
(i.e., a small office and a classroom) and perform six gestures
(i.e., pull left, pull right, lift up, press down, draw a circle,
and draw zigzag, illustrated in Fig. 10) that are suitable for
human–computer interaction. In addition, each gesture is per-
formed by five users (three males and two females) repeating
ten times with a fixed execution time of 1.8 s.

For all the following experiments, we adopt the average
accuracy as the metric of evaluation. The models are optimized
by Adam [44] with a learning rate of 0.0005 and multistep
decay scheduler, and the mini-batch size is 60. The hyper-
parameter λ is empirically set to 1, respectively. We implement
the proposed system on PyTorch-1.8.0, framework on an Intel
Xeon CPU E5-2630 v4, with an NVIDIA Titan X Pascal GPU
and 32.0-GB RAM.

B. In-Domain Evaluation

We first evaluate the proposed method in the traditional
way that all CSI sample sets (i.e., training set P, testing set
T, and support set S) are collected from the same domain.
Fig. 11 shows the confusion matrices of the in-domain evalu-
ations on Widar3.0, ARIL, and CSIDA data sets. The proposed
system WiGr achieves an accuracy of 92.7%, 86.8%, and
91.2% on Widar3.0, ARIL, and CSIDA data sets, respectively.
The support set consists of only one sample for each gesture
category, namely, the one-shot condition. We use 80% of the
remaining data as training data and 20% as the testing set.
Cosine similarity is employed, and both amplitude and phase
values are used in this experiment.

C. Cross-Domain Evaluation

We further evaluate WiGr on the cross-domain experiments
with the domain factors of environment, user, location, and ori-
entation. For each cross-domain experiment, only one domain
factor altered. We use holdout cross-validation on three data
sets (i.e., Widar3.0, ARIL, and CSIDA).

Environment Variety: In this experiment, we select one room
as the source domain and the other as the target domain. We
conduct these experiments on both Widar3.0 and CSIDA data
sets. In addition, Widar3.0 contains three different environ-
ments, i.e., a classroom, an office, and a hall. CSIDA data set
is collected from two different environments (i.e., a classroom
and an office). For each data set, we randomly select a pair
of environments as the source domain and the target domain.
Then, we repeat each experiment ten times to obtain the objec-
tive evaluation results. As shown in Fig. 12(a), the average
accuracies are above 85% on the CSIDA data set and achieve
the best performance of 95% in the four-shot testing. The eval-
uation on the Widar3.0 data set shows average accuracies of
60%, 65%, 75%, and 83% from one-shot to four-shot testing,
respectively. The decline in accuracy from the CSIDA data
set to the Widar3.0 data set is due to significant difference of
the environmental layouts of the two data sets. Furthermore,
since the prototype is the average of the support feature vec-
tors, the accuracies are higher with the number of support
samples increasing in both the Widar3.0 and the CSIDA data
sets.

User Independent: The recognition accuracy across users
is another criterion for cross-domain evaluation. As a human
sensing technique, the ability to adapt to different users is crit-
ical for practicality. The challenges of cross-user recognition
toward two aspects: 1) users who have different body fea-
tures may influence diverse fluctuations in WiFi signals and
2) individuals exhibit different behavior patterns with respect
to the same gesture. To evaluate the cross-user performance
of WiGr, we train the model with the labeled CSI samples of
one user and test with the CSI samples from other users. As
Fig. 12(b) depicts, the average accuracy remains over 90% on
the CSIDA data set. WiGr achieves the highest accuracy of
89% under the four-shot condition on the Widar3.0 data set.
The difference in performance between testing on CSIDA and
Widar3.0 can be attributed to the disparity in number of users;
Widar3.0 has 16 users for testing while CSIDA only has five
users. Overall, WiGr is robust to different users.
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(a) (b) (c)

Fig. 11. Confusion matrices of in-domain evaluations on three gesture data sets. (a) Widar3.0 (92.7%). (b) ARIL (86.8%). (c) CSIDA (91.2%).

(a) (b) (c)

(e)(d)

Fig. 12. Accuracies of cross-domain evaluations. (a) Cross-environment. (b) Cross-user. (c) Cross-location. (d) Cross-orientation. (e) Overall cross-domain
accuracy.

Location Diversity: In this experiment, we adopt two data
sets, ARIL and Widar3.0. In particular, the ARIL data set
collected the CSI samples from 16 locations in one room.
Meanwhile, Widar3.0 contains samples from five different
locations in each environment (i.e., a classroom, an office,
and a hall). We train the model with CSI samples col-
lected at one location and then test with the remaining
samples from the other locations in the same room. As
shown in Fig. 12(c), WiGr reaches average accuracies between
55% and 60% on both ARIL and Widar3.0 under the one-
shot condition. With the increase of the support samples,
average accuracies achieve 92% and 75% on ARIL and
Widar3.0 data sets, respectively. Due to the influence of dif-
ferent users and orientations, cross-location recognition on
the Widar3.0 data set is more difficult than on the ARIL
data set.

Orientation Sensitivity: For commonly gesture recogni-
tion applications (e.g., computer control and motion-sensing
game), the orientations of the user may shift. Consequently,
it is important to enhance the orientation-robust ability of

the recognition system. We conduct the cross-orientation
experiment on the Widar3.0 data set to evaluate the orien-
tation sensitivity of WiGr. Specifically, we use CSI samples
of one orientation to train the model and test it with the sam-
ples collected from the other four orientations performed by
the same user at the same location. As illustrated in Fig. 12(d),
the accuracy under across-orientation grows from 75% to 84%
in accordance with the increase of the support samples. This
shows that the performance is stable under cross-orientation
situations.

Overall Cross-Domain Results: As shown in Fig. 12(e), the
performance on cross-domain and cross-user evaluations is
better than those in the cross-location and cross-orientation
testing. Notably, the accuracy also grows with increases in the
number of support samples. In particular, the average accura-
cies across domains are over 85% under the four-shot setting.
We only need 24 labeled samples (i.e., four labeled samples
for each gesture) from the new target domain to maintain
a consistently high recognition accuracy without retraining
the model.
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TABLE I
METHODS COMPARATION

Fig. 13. Comparison of methods.

D. Discussion

In this section, we compare the performance of original PN,
Dual-Path PN (without OR), Dual-Path PN (ours), and several
state-of-the-art methods in cross-domain HGR. Then, we eval-
uate the impact of the similarity measurements and the input
types of CSI data.

1) Comparison of Methods: We first compare WiGr against
several state-of-the-art methods, Widar3.0 [22], JADA [16],
EI [23], and WiAG [24] that have been introduced in
Section II. Table I illustrates the differences between these
works. Specifically, the methodology (first column) is the type
of CSI-based cross-domain sensing techniques discussed in
Section II. The second column is the number of parameters.
Our method WiGr has the second largest number of parame-
ters. JADA has the most parameters since it needs three neural
networks to form the proposed framework. However, WiAG
has no parameters in the recognition model because it uses
the K-Nearest-Neighbor algorithm to perform the classifica-
tion. The third and fourth columns are the training and testing
time of one CSI sample, respectively. The training time of
WiGr is acceptable compared with the others. Since WiAG
needs to generate virtual samples for all possible domains, it
is the most time-consuming method. The testing time of all
the methods, except WiGr, is significantly reduced compared
to the training time. This is because they can reduce part of
the process in the testing phase. The last column proposes the
mean accuracy (with the standard error of the mean) of the
in-domain and the cross-domain evaluations. WiGr achieves
state-of-the-art recognition accuracy. Nevertheless, the recog-
nition accuracy of WiGr has a high standard error that is not
as stable as other methods.

The crucial part of the proposed HGR system WiGr is
the Dual-Path PN which is a modified version based on the
original PN. To test the effectiveness of the improvements,

Fig. 14. Comparison of similarity measurements.

we compare the performances of the original PN, Dual-Path
PN (without OR), and Dual-Path PN under the cross-domain
configuration. In addition, as illustrated in Fig. 13, the aver-
age accuracy of Dual-Path PN (without OR) is 14% higher
than that of PN. Hence, the Path-A substructure is effective
for constructing an appropriate embedding space. Further, the
Dual-Path PN has better performance than that without OR,
which proves that OR helps expand the gaps among differ-
ent clusters in the embedding space. WiGr achieves better
performance than JADA [16], EI [23], and WiAG [24] and
comparable average accuracy with Widar3.0 [22]. However,
the performance of WiGr is not as stable as Widar3.0. For the
utility of the WiGr system, we only use the CSI samples from
one receiver to realize the recognition task rather than at least
three receivers as needed in Widar3.0.

2) Comparison of Similarity Measurements: In Path-B, the
similarity measurement is an important factor. To compare
the impact of two different metric methods (i.e., the nega-
tive Euclidean distance and cosine similarity). We conduct
in-domain one-shot experiments on the three data sets. Further,
the input type is the amplitude of CSI. As demonstrated in
Fig. 14, the average accuracy of WiGr based on cosine similar-
ity is better than that based on the negative Euclidean distance.
As aforementioned, the Path-A substructure and OR are ded-
icated to constructing an appropriate embedding space for
cosine similarity. Hence, adopting cosine similarity in Path-B
is more suitable than the negative Euclidean distance.

3) Impact of Input Types: Since CSI sample is a complex
tensor, we decompose it into amplitude and phase. To eval-
uate the impact of different input types (i.e., amplitude only,
phase only, and amplitude-phase concatenated), we conduct
cross-environment experiments on the CSIDA data set and
Widar3.0 data set. As shown in Fig. 15, the average accu-
racy of WiGr with phase as the input type is better than that
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Fig. 15. Comparison of input types.

with amplitude, and the best performance is that with both
amplitude and phase. In addition, the difference in accuracy
with phase or amplitude as input, in CSIDA, are more sig-
nificant than in Widar3.0 data set. The reason for the above
phenomenon is that the change of phase is caused by the
motion of subjects in the propagation path. Meanwhile, the
variation of amplitude is related to the obstruction in signal
by subjects in different signal paths. For gesture recognition,
the motion of hands directly connected to the gesture type.
Hence, the change of phase contains more information than
variation of amplitude. Consequently, this observation suggests
that phase may serve as a better input than amplitude. The dis-
crepancy in capture tools adopted in CSIDA and Widar3.0 may
cause the above phenomenon.

4) Limitations and Future Works: There are several limi-
tations with our proposed model, which can serve as fruitful
directions for further investigation.

First, the performance of WiGr is not stable as it is sen-
sitive to the representative ability of prototypes. To expand,
the representative ability may degrade for two reasons: 1) the
number of labeled samples for each class is too small to com-
pute the prototypes and 2) the labeled sample in the support
set is far away from its ground-truth center. To address this
problem, we can try to introduce prior knowledge to enhance
the prototype estimation.

Second, WiGr is only suitable for one-domain-cross scenar-
ios (i.e., cross-room only, cross-location only, cross-user only,
and cross-orientation only). We are interested in expanding
WiGr to the multidomain-cross scenario. For example, train-
ing the model on the CSI samples of user A performed in
room 1 and deploying the model in room 2 for user B.

Third, the learning process of WiGr is computationally
intensive. As mentioned above, the WiGr is sensitive to the
prototypes. As a result, we need to train the Dual-Path PN
multiple times with different sampling for the support set. In
addition, the CSI is time-series data. As such, we need to
expand the Dual-Path PN to the sequence data. Moreover, in
the testing procession, WiGr can access unlabeled data which
is helpful to estimate the data distribution. Therefore, more
studies are needed to enable online learning with streaming
data on lightweight devices.

VI. CONCLUSION

In this article, we propose a WiFi-based cross-domain ges-
ture recognition system, WiGr. To begin with, we propose
a novel Dual-Path PN to identify common human gestures

with consistently high accuracy under domain dynamics. We
then provide a regularization, namely, OR, to increase the gaps
between different clusters in the embedding space. Next, we
construct a WiFi-based HGR data set, namely, CSIDA, for
testing the performance of WiGr. Finally, we conduct compre-
hensive experiments on the CSIDA data set and the other two
public data sets (i.e., Widar3.0 and ARIL). The evaluation sug-
gests that WiGr achieves 86.8%, 91.2%, and 92.7% in-domain
recognition accuracy on ARIL, CSIDA, and Widar3.0 data
sets, respectively. Further, WiGr achieves high accuracy in
cross-domain experiments without retraining under the four-
shot setting. Specifically, WiGr obtains 89%, 93%, 83.5%,
and 84% average accuracies in cross-environment, cross-user,
cross-location, and cross-orientation experiments, respectively.
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