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Abstract—Facial Expression Recognition (FER) is crucial for
understanding human emotions, with applications spanning from
mental health assessment to marketing recommendation systems.
However, existing camera-based methods raise privacy concerns,
while RF-based approaches suffer from limited environmental
generalizability and high cost. In this work, we propose ToFace,
a FER system leveraging a low-cost (4.8$) Direct Time-of-
Flight (DToF) sensor that has been available on commodity
smartphones. This sensor provides an extremely low-resolution
8 × 8 depth map and a clear Field of View (FoV), significantly
mitigating privacy concerns while avoiding the impact of ambient
objects. Despite the benefits, the low-resolution depth map in-
troduces significant challenges for precise expression recognition
due to limited facial structure information. We first develop a
physical model to extract additional spatial information from
the intermediate sensor output, i.e., the transient histograms.
We then propose a physics-integrated neural network to re-
construct a facial structure map comprising both depth and
orientation for accurate expression recognition. We conduct real-
world experiments with 12 users and compare our model with
several baselines. The results demonstrate that ToFace achieves
the highest recognition accuracy of 75%.

Index Terms—facial expression recognition, direct time-of-
flight sensor, sensing AI, internet of things.

I. INTRODUCTION

Facial expression recognition (FER) plays a pivotal role in

understanding emotional states [1]–[3]. By analyzing facial

expressions, we can assess emotional flexibility and monitor

changes in emotions, providing valuable feedback for quanti-

fying customer interest [2] and depression symptoms [3]. FER

has been extensively studied, particularly in the computer vi-

sion field, with methods such as de-expression learning with a

single RGB image [4] and part-based hierarchical bidirectional

RNNs for facial sequences analysis [5]. However, vision-based

approaches experience performance degradation in low-light

environments and raise privacy concerns [6]. Recently, mm-

FER [7] proposes a millimeter-wave radar-based FER system,

which significantly mitigates privacy concerns and the impact

of light conditions. However, mmFER [7] suffers from limited

environmental generalizability due to multipath interference

and high costs, which hinder its widespread deployment. In

a nutshell, existing vision-based and RF-based methods face

issues including privacy intrusion, environmental vulnerability,

and high cost.

To address these issues, we propose ToFace, a privacy-

preserving and environmentally robust FER system, with a

low-cost (4.8$) Direct Time-of-Flight (DToF) sensor. A DToF

sensor is an integrated gride of Single-Photon Avalanche

Incident 

signal

DToF

(a) (b)

(c)

!"
!!

"

#

$

#$

%

#

Fig. 1. DToF sensing diagram and data sample illustration. (a) shows the
diffuse reflection of infrared light on the face. (b) is the transient histograms
of 8×8 zones of VL53L8CH sensor. (c) is the transient histogram of one
zone.

Diodes (SPADs) that estimate the distance between the sensor

and target by measuring the time of flight (ToF) of infrared

(IR) photons, providing an 8×8 low-resolution depth map. The

extremely low-resolution depth map mitigates privacy risks,

making them less likely to identify individuals and easier to

obtain consent for their use. Additionally, as an active sensor

operating in the near-infrared spectrum, DToF can function

in the dark, and its clear Field of View (FoV) (45◦ × 45◦)

facilitates the mitigation of interference from ambient objects.

Although DToF sensing is well-suited for privacy-preserving

and environmentally robust FER, the limited facial structure

information in the low-resolution depth map [8], [9] poses

challenges for both face detection and expression recognition.

We propose two novel techniques for DToF sensing to

overcome these challenges. First, based on an in-depth un-

derstanding of DToF sensing principles, we present a physi-

cal structure estimation model that can estimate fine-grained

structural information, including multiple depths and orienta-

tions, from the intermediate output of the DToF sensor, i.e.,

the transient histogram. Then we devise ToFace, a physics-

integrated neural network that combines the above physical

model and deep learning modules to achieve accurate face

detection and expression recognition. Specifically, for accurate

face detection, we propose a simplified detection network to

estimate the bounding box of the target user’s face in the depth

map by utilizing the property that the reflectance intensity of

human skin is significantly lower than that of ambient ob-

jects. For expression recognition, we design a super-resolution

module based on the physical structure estimation model to

estimate higher-resolution depth and orientation maps usingIC
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the transient histogram as input. We then filter out regions

corresponding to ambient objects in the depth and orientation

maps based on the facial bounding box and propose a classifier

module to perform accurate expression estimation.

To evaluate the effectiveness of ToFace, we conduct exper-

iments with 12 users in two different environments: an office

and a living room. Compared with other baseline approaches,

ToFace achieves the highest recognition accuracy of 75.02%,

which is comparable to state-of-the-art CV-based accuracy

[10]. Additionally, for depth and orientation estimation, our

model demonstrates the best performance, with errors of 23.55

mm and 0.042 rad, respectively.

II. DTOF SENSING PRINCIPLE

A DToF sensor estimates the distance between the sensor

and targets by measuring the propagation time of individual

IR photons using a grid of SPADs. This approach offers

lower power consumption (100 mW [11]) and higher depth

resolution (e.g., 1.5 mm [12]) compared to indirect ToF

sensors, which rely on phase-shift measurements [13]. In this

work, we build our prototype using the STMicroelectronics

VL53L8CX sensor, which outputs an 8× 8 depth map, along

with intermediate measurements: an 8×8 reflectance map and

transient histograms, as shown in Fig. 1.

Specifically, we introduce the sensing principle as follows.

As depicted in Fig. 1(a), the IR light emitted by a dToF

sensor is diffusely reflected off the surfaces of the human face

according to the Lambertian reflection model, described by the

following equation:

f (θ,R) =
βcos(θ)

4π2R4
, (1)

where f(·, ·) denotes the reflection factor, θ is the incident

angle of IR light, R is the distance between the target and the

sensor, and β is the skin’s reflectivity.

To extend this model to a patch with a central point P⃗ and

surface normal N⃗ , we establish a local polar coordinate system

on that patch with P⃗ as the origin. Hence, the reflection factor

for a point p⃗ on the patch is given by:

f(P⃗ , N⃗ , θp, r) =
βP⃗ · N⃗

4π2|p⃗|5
. (2)

where r and θp represent the polar coordinates of the point.

p⃗ can be represented as p⃗ = P⃗ + r cos(θp)U⃗ + r sin(θp)V⃗ ,

where U⃗ and V⃗ are two orthogonal vectors on the patch.

Consequently, the received signal ψ(t) for one zone in the

dToF sensor is:

ψ(t) =

Z∑
P

∫ r0

0

∫ 2π

0

f(P⃗ , N⃗ , θp, r) · γ(t−
|p|

2c
)dθpdr, (3)

where γ represents the emitted infrared signal, and c denotes

the speed of light and Z is the set of all patchs in the dToF

zone. ψ(t) is the transient histogram ultimately obtained, as

shown in Fig. 1(c).
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(a) Histogram of one zone with a
board at depths of 30cm or 60cm.
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(b) Histogram of one zone with
boards at depths of 30cm and
60cm simultaneously.
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Fig. 2. Verification experimental results.

III. METHODOLOGY

In this section, we first introduce the physical model that

enables the estimation of multiple depths and orientations of

the target, which serves as a generic model for DToF sensing.

Next, we detail our physics-integrated neural network design

for face detection and expression recognition.

A. Physical Structure Estimation Model

Through in-depth analysis of the collected real data samples

and a thorough understanding of the sensing principle, we

establish the relationship between the shape of the transient

histogram and the target’s fine-grained structure, which in-

spires us to develop the following multi-depth and orientation

estimation method.

From Transient Histogram to Multi-Depth Estimation: To

estimate a single depth, we place a panel at 30cm or 60cm

respectively, and get the histograms as shown in Fig. 2(a). We

identify the first bin in the transient histogram that surpasses

the noise threshold [14]. This bin marks the time delay of

IR signals, enabling depth calculation by multiplying the bin

index by half the speed of light. For multi-depth estimation,

we place two boards at 30cm and 60cm at the same time to

get the corresponding transient histogram. As shown in Fig.

2(b), the transient histogram appears as a superposition of

individual histograms. Although the overlap between objects

may obscure the first bins, the maximum bin of the peak is

more distinguishable and easier to detect than the first bin,

making it a more reliable marker for estimating depth. The

depth of the i-th target is then calculated as ri =
c
2 (Ti − τ),

where Ti is the time index of the i-th peak. τ represents the

time between the start of the emitted pulse and the moment

when the peak intensity is reached.
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Fig. 3. Model overview of ToFace.

From Transient Histogram to Orientation Estimation: To

determine the orientation of a patch, we discovered two prop-

erties of the transient histogram, i.e., orientation-maximum

relation and orientation-width relation as:

θ = arc cos(
max(ψθ)

max(ψ0)
), (4)

θ = arc sin(
c · (Th − Tl)

4r
), (5)

where ψθ is the histogram at orientation θ, ψ0 is the histogram

at θ = 0, Th is the histogram width, Tl is the duration of the

IR signal, and r is the patch radius. Our experiments further

validate these findings, as shown in Fig. 2(c) and Fig. 2(d).

B. Physics-Integrated Neural Network

The ToFace model comprises three main components: face

detection, structured reconstruction, and expression recogni-

tion, as depicted in Fig 3. We first preprocess the reflection

and depth maps to obtain the surface reflectance map, which

is used to localize the face via a bounding box based on Eq.1.

Then, as described in §III-A, the transient histogram is used to

extract additional spatial information and reconstruct higher-

resolution depth and orientation maps. These maps are then

masked by the face bounding box and used for expression

classification.

Face Detection: As shown in Fig. 3(a), the DToF sensor

generates a reflection map f(·, ·) as described in Eq. 1. By

fusing the depth map d
8×8 with the fourth power of the

depth values, we can get the surface reflectance map S
8×8.

The surface reflectance at position (i, j), Si,j , is given by

Si,j = βcos(θ)
4π2 , which depends on the object’s reflectivity β

and orientation angle θ. Since the reflectivity and curvature of

the face are consistent, background noise can be filtered by

thresholding, yielding the surface reflectance map as shown in

Fig. 3(a).

The surface reflectance map S
8×8 has lower spatial reso-

lution than standard images, making typical computer vision

models unnecessary and inefficient. To address this, we design

a simplified CNN-based face detection model tailored for

low-resolution inputs, using the same regression loss Lrg as

SSD [15]. Despite its simplicity, this network achieves IOU

performance comparable to standard detection models.

Structured Reconstruction: As discussed in §III-A, accurate

depth extraction from a transient histogram requires identi-

fying its peaks. Given the limited temporal resolution (e.g.,

13ns [11]), improving this resolution is essential for precise

depth estimation. While methods such as fitting Gaussian

functions to histograms have been proposed [11], they are

computationally expensive and struggle to handle multiple

peaks efficiently. Instead, we use a Temporal Super Resolution

model based on U-Net [16] improve the temporal resolution

of the original transient histogram T
8×8×n to a higher-

resolution histogram T
8×8×(20×n)
h . To reduce noise and ensure

continuity in facial movements, multiple consecutive frames

of the histogram are used as input. Due to the lack of ground

truth high-resolution transient histograms, we applied a weakly

supervised approach. The generated Th is downsampled as

TDS through summation, and the temporal super-resolution

loss Lsr is calculated using Mean Squared Error (MSE) as

Lsr = MSE(TDS ,T).
To further enhance depth extraction accuracy, we incor-

porate wavelet-based preprocessing to optimize peak iden-

tification. In §III-A, we explored extracting multiple object

depths by identifying peaks. To improve peak extraction, we

applied the Stationary Wavelet Transform (SWT) to preprocess

the input histogram. SWT preserves translation invariance

and enables multi-scale analysis, ensuring that peak detection

remains unaffected by peak position while identifying peaks

across different frequency ranges. As shown in Fig. 4(a), the

transient histogram and the corresponding Level 2 Detail Coef-

ficients of the SWT are illustrated for two boards positioned at

30cm and 60cm. The SWT feature consistently aligns with the

peaks of the transient histogram, with the feature’s magnitude

reflecting the intensity of each peak.

Following the preprocessing step, the next phase involves

reconstructing depth map with higher space resolution by

using a specialized neural network approach. We use a CNN-

based Depth Decoder to recover depth values from the SWT

features. To prevent information loss and enhance feature prop-

agation, we adopted bypass connections inspired by U-Net.

For the depth reconstruction loss, we chose the Mean Absolute

Error (MAE) for the depth reconstruction loss Ldr because it

penalizes all errors equally, making it more suitable for super-

resolution tasks than MSE, which focuses more on large errors

[17]. The loss is defined as Ldr = MAE(D,Dgt), where D

is the reconstructed depth map and Dgt is the downsampled

ground truth from the depth map obtained by Femto Mega.

As described in Eq. 4 and Eq. 5, the orientation angle θ is

influenced by both the peak intensity and width. However, as

noted in Eq. 2, peak intensity also depends on the distance

between the DToF sensor and the target. To address this, we

first calculate a depth compensation factor C using the depth

map, and the compensated transient histogram Tc is derived

as Tc = C×Th which is then passed through a CNN-based

Orientation Decoder to generate the orientation map.

Similar to the Depth Decoder, the Orientation Decoder
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employs bypass connections and Mean Absolute Error (MAE)

as the orientation reconstruction loss: Lor = MAE(O,Ogt),
where Ogt is the ground truth of orientation map which is

calculated by the depth map of Femto Mega.

Expression Recognition: From the reconstructed depth D and

orientation O maps, we extract the facial region using a mask

derived from the bounding box, yielding Dmask and Omask.

These masked maps are used for expression classification with

cross-entropy loss Lc.

IV. EXPERIMENT SETUP

A. Dataset

To evaluate ToFace, we collected 46,369 samples from

video frames captured in two environments (office and living

room) with IRB approval. Twelve volunteers (9 males, 3

females) performed 7 expressions: neutral, happiness, anger,

sadness, fear, and disgust [18]. Participants moved freely

during data collection, introducing variations in orientation,

position, and depth to test the model’s generalization across

diverse scenarios. We split the dataset into training, validation,

and testing sets with a ratio of 8:1:1, respectively.

B. Baseline Models

For face detection and expression classification, we compare

our approach with Faster R-CNN [19] and SSD [15]. In terms

of depth and orientation reconstruction, we benchmark our

method against U-Net [16] and MobileNetV2 [20]. These com-

parisons allow us to comprehensively evaluate the performance

of our model across different aspects.

C. Metrics

Accuracy: The accuracy of facial expression classification.

Intersection over Union (IOU): It indicates the accuracy of

predicted bounding boxes in face detection by measuring the

overlap between the predicted area and the ground truth area.

Mean Absolute Error(MAE): The performance of facial

reconstruction is evaluated by calculating the Mean Absolute

Error (MAE) between the masked depth map Dmask and

orientation map Omask and their corresponding ground truth

maps, after applying the bounding box mask. The units for

depth and orientation are millimeters and radians, respectively.

V. EVALUATION

Overall performance: As shown in Table. I, ToFace out-

performes most aspects of baselines, demonstrating the su-

periority of our physics-inspired design. ToFace achieves the

highest FER accuracy with 75%. Besides, ToFace yields an

IOU similar to the baseline, but use a simpler detection

network structure. Moreover, the ToFace model outperforms

all baselines in terms of reconstruction performance.

Cross user: Robust performance across users is essential for

practical FER systems. We evaluate ToFace using data from 12

participants (U1–U12). As shown in Fig.4(b), while accuracy

for U2 and U11 is slightly lower, it remains consistently high

for most users, demonstrating the model’s overall robustness.

TABLE I
OVERALL PERFORMANCES.

Model Acc IOU Depth Err (mm) Orient. Err (rad)

ToFace 0.7502 0.8814 23.55 0.042
Faster Rcnn 0.5719 0.8872 ✗ ✗

SSD 0.521 0.8898 ✗ ✗

Unet ✗ ✗ 24.7 0.047
MobileNet ✗ ✗ 52.28 0.1176
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Fig. 4. Cross evaluation.

Impact of distance: We evaluate the impact of distance

between the users and the DToF sensor and observe a slight

performance drop beyond 50 cm, as shown in Fig. 4(c).

Impact of Expression: ToFace exhibits consistent perfor-

mance across facial expressions, achieving comparable accu-

racy for all expressions, as shown in Fig. 4(d).

VI. CONCLUSION

We propose ToFace, a FER system utilizing a low-cost

DToF sensor that ensures both privacy preservation and envi-

ronmental robustness. Through an in-depth exploration of the

DToF sensing principles, we introduce a physical model for

fine-grained target structure estimation, serving as a general

method for DToF sensing. By integrating this physical model

with deep learning modules, ToFace achieves accurate face

detection and expression recognition. We develop a prototype

using a commodity DToF sensor and conduct extensive real-

world experiments, demonstrating the remarkable performance

of ToFace. Our future work will explore finer-grained facial

representation or reconstruction and improve ToFace’s gener-

alizability for cross-domain scenarios, e.g., new users.
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